A modified fluorimetric host cell reactivation assay to determine the repair capacity of primary keratinocytes, melanocytes and fibroblasts
نویسندگان
چکیده
BACKGROUND The Host Cell Reactivation Assay (HCRA) is widely used to identify circumstances and substances affecting the repair capacity of cells, however, it is restricted by the transfection procedure used and the sensitivity of the detection method. Primary skin cells are particularly difficult to transfect, and therefore sensitive methods are needed to detect any variations due to the cell-type or inter-individual differences or changes induced by diverse substances.A sensitive and repeatable method to detect the repair capacity of skin cells would be useful in two different aspects: On the one hand, to identify substances influencing the repair capacity in a positive manner (these substances could be promising ingredients for cosmetic products) and on the other hand, to exclude the negative effects of substances on the repair capacity (this could serve as one step further towards replacing or at least reducing animal testing). RESULTS In this paper, we present a rapid and sensitive assay to determine the repair capacity of primary keratinocytes, melanocytes and fibroblasts based on two wave-length Green Fluorescent Protein (GFP) and DsRed reporter technology in order to test different substances and their potential to influence the DNA repair capacity. For the detection of plasmid restoration, we used FACS technology, which, in comparison to luminometer technology, is highly sensitive and allows single cell based analysis.The usefulness of this assay and studying the repair capacity is demonstrated by the evidence that DNA repair is repressed by Cyclosporin A in fibroblasts. CONCLUSIONS The methodology described in this paper determines the DNA repair capacity in different types of human skin cells. The described transfection protocol is suitable for the transfection of melanocytes, keratinocytes and fibroblasts, reaching efficacies suitable for the detection of the restored plasmids by FACS technology. Therefore the repair capacity of different cell types can be compared with each other. The described assay is also highly flexible, and the activity of other repair mechanisms can be determined using modifications of this method.
منابع مشابه
In vitro Co-Culture of Human Skin Keratinocytes and Fibroblasts on a Biocompatible and Biodegradable Scaffold
Background: Extensive full-thickness burns require replacement of both epidermis and dermis. In designing skin replacements, the goal has been to re-create this model and make a product which has both essential components. Methods: In the present study, we developed procedures for establishing confluent, stratified layers of cultured human keratinocytes on the surface of modified collagen-chito...
متن کاملEvaluation of chitosan gel on burn wound healing and keratinocytes function
Skin burns are common skin injuries that can result from exposure to various sources of heat by which, depending on the cause, different degrees of burns are generated. In restoration of superficial burns by re-epithelialization, the skin is rebuilt, but the skin color is different than the healthy tissue. Keratinocytes represent the major cells of the epidermis. These cells are sourced from ec...
متن کاملEstablishment of a Primary Cell Culture of Human Fibroblast in Iran
Background: Human fibroblasts are the part of the dermis that secrete extracellular matrix for the purpose of tissue repair. Culturing fibroblasts, which leads to formation of a monolayer of these cells, is used for treating various conditions including thermal burns and other skin defects such as diabetic and varicose vein leg ulcers. Therefore, we aimed at developing a fibroblast bank to acco...
متن کاملIsolation and Cultivation of Adult Human Keratinocyte Stem Cells for Regeneration of Epidermal Sheets
Background: Keratinocyte stem cell is one of the adult stem cells that inhabits the skin and contributes to skin function and renewal. Adult stem cells are best defined by their capacity to self-renew, and to maintain tissue function for a long period of time. These findings indicate the importance of these cells for clinical applications including regenerative medicine, tissue engineering and ...
متن کاملComprehensive analysis of zinc derivatives pro-proliferative, anti-apoptotic and antimicrobial effect on human fibroblasts and keratinocytes in a simulated, nutrient-deficient environment in-vitro
Zinc as therapeutic agent in skin and wound care has been known for centuries, but its role is controversial and comprehensive investigations in nutrient-deficient environments are lacking. We aimed to provide a broad analysis of different zinc derivatives on proliferation, apoptosis and antimicrobial properties in a simulated nutrient-deficient environment in-vitro. Human fibroblasts (CRL2522)...
متن کامل